Quick! What’s the formula for finding the circumference of a circle? Do you remember the Pythagorean Theorem? What about the distance formula?
If you’re around my age and not a math geek, chances are the answers are “I don’t know,” “No,” and “Are you kidding me?”
When you were in school, memorizing formulas was required. But as a grownup, that’s not necessary. In fact, you can find all sorts of shortcuts that make formulas unnecessary. Here are two examples:
1. Last week, during spring break, I offered to teach my daughter and four of her friends how to make circle skirts. We bought material, set up three sewing machines and two ironing boards and got to work. I found a really wonderful (and easy) tutorial at Made, which employs a great shortcut for cutting out a circle: fold the fabric into fourths and then trace one-fourth of a circle, which will be the waist. After that, measure the length of the skirt (plus hem allowances) and trace another one-fourth circle.
We needed the radius of the smaller circle, but really all we had was the circumference of that circle — the measure around the waist. Dana at Made has a quick and easy process for this: divide the waist measurement by 6.28. Ta-da! The radius!
But why does this work? Because the circumference of a circle is C = 2πr. 2πr is approximately 6.28r. That means that you can divide the circumference by 6.28 to get the radius. Neat, huh?
2. Yesterday, I was the guest on the 1:00 hour of Midday with Dan Rodricks, Baltimore’s public radio station’s noon call-in program. Dan asked listeners to find the surface area of a cylinder with a radius of 6 and height of 8. A caller reminded me that there is a formula for this: SA = 2 π r2 + 2 π r h. But lordy, I didn’t remember that! Instead, I found the area of each base — both circles — and the area of the rest of the cylinder (using the circumference of the base times the height of the cylinder). I added these and got the same answer.
So what’s the point? You don’t need to remember a formula. If you can break the problem down into smaller parts, do that. If it’s easier to remember to just divide or multiply by something, go for it. Unless you’re taking middle school math or have to teach a math course, the ins and outs of the formulas are not critical. What you need to be able to do is use the concepts you understand to solve the problem. Sometimes that means remember the formula, sometimes that means finding a sneaky way around your bad memory.
Don’t forget to enter the Math for Grownups facebook contest! Just visit the page to find out today’s clue (and Monday’s and Tuesday’s). Then post where you’ve noticed this math concept in your everyday life. Good luck!