Earlier this week, Andrew Hacker, a political science professor at Queens College, City University of New York, opined in an essay for the New York Times that high schools should stop teaching higher Algebra concepts — because kids don’t get it.

I’m sure Mr. Hacker isn’t alone in his frustration with the failure rates of students in these courses. (Trust me, math teachers are pulling their hair out, too.) Yes, math is hard. And it’s also the underpinning of our physical world. By pretending it doesn’t matter or that our future engineers, teachers, nurses, bakers and car mechanics don’t need it one eensy-teensy bit, we risk the dumbing down of our culture. And our students risk losing out on the highest-paying careers and opportunities.

The problem isn’t the math — as Mr. Hacker eventually mentions, though obliquely. It’s how the math is taught. We need to get a handle on why students feel so lost and confused. And here are just two reasons for this.

1. Kids don’t know what they want to be when they grow up — especially girls who end up in math or science fields.

When I was in seventh grade, I thought I was a horrible math student. I was beaten down and frustrated. I felt stupid and turned around. Unlike my peers, I took pre-algebra in eighth grade, effectively determining the math courses I would take throughout high school. (I wasn’t able to take Calculus before graduating.)

And that was a fine thing for me to do. Turns out I wasn’t stupid or bad at math. I just had a poor understanding of what it meant to be good at math. I had really talented math teachers throughout high school. I was inspired and challenged and encouraged. By the time I was a senior, it was too late to take Calculus, so instead I doubled up with two math courses that year.

After graduation, I enrolled in a terrific state school and became a math major. Four years later, I graduated with a degree in math education and a certification to teach high school. And now, 22 years later, my job revolves around convincing people that math is not the enemy.

What if I had been told that algebra didn’t matter? What if I had been shepherded into a more basic math course or track? Because higher level math courses were expected of me — and because I had excellent math teachers — I found my way to a career that I love. Even better, I feel like I make a difference.

How many other engineers, scientists, teachers, statisticians and more have had similar experiences? How many of us are doing what we thought we wanted to do when we were 12 years old? Why close the door to discovering where our talents are? To me, that’s not what education is all about.

Look, I can’t say this enough: I was an ordinary girl with an ordinary brain. I can do math because I convinced myself that it was important enough to take on the challenge. I was no different than most students out there today. We grownups need to figure out ways to hook our kids into math topics. I’m living proof that this works.

2. Higher algebra concepts describe how our world works.

How does a curveball trick the batter? How much money can you expect to have in your investment account after three years? What is compound interest?

Students need to better understand the math in their own worlds. We do them a grave disservice when we give them problem after problem that merely asks them to practice solving for x. The variable matters when the problem is applied to something important — a mortgage, a grocery bill, the weather, a challenging soccer play.

We can’t pretend that everyone depends on higher-level mathematics in their everyday lives. But neither can we pretend that these concepts are immaterial. Knowing some basics about algebra is critical to being able to manage our money or really get into a sports game.

For example, when the kicker attempts a field goal in an American football game, he is depending on conic sections — specifically parabolas. Does he need to solve an equation that determines the best place for his toes to meet the ball in order to score? Nope. But is it important for him to know that the path of the ball will be a curve, and that the lowest points will be at the points where he makes contact with the ball and where the ball hits the ground.

That’s upper-level algebra at work. If you were to put the path of the football on a graph, making the ground the x-axis, those two points are where the curve crosses or meets that axis.

What’s so hard about that?

Look, we need to adjust the ways we teach math and assess math teachers. I agree that math test scores aren’t the be all, end all. I agree that most high school students won’t be expected to use the quadratic formula outside of their alma mater. (Though algebra sure is useful with spreadsheets!) And I agree that asking teachers to merely teach the concepts — without appealing to students’ understanding of how these concepts apply to their everyday lives — is draining the life out of education.

And really, how much of the rest of our educational system is directly useful? Do I need to spout out the 13 causes of the Civil War or balance a chemical equation or recite MacBeth’s monologue? (“Tomorrow, and tomorrow, and tomorrow, Creeps in this petty pace from day to day…”) I can say with no hesitation: Nope! But learning those facts helped inform my understanding of the world. Algebra is no different.

What do you think about the New York Times piece? Do you agree that we should drop algebra as a required course? In your opinion, what could schools do differently to help students understand or apply algebra better?

Write A Comment